
Discover the world at Leiden University

Machine Learning for Detecting Code Smells

Marcello M. Bonsangue JCSSE 2022, Bangkok, 23 June 2022

Jan van Rijn
M. Bonsangue Chitsutha Soomlek

Discover the world at Leiden University

Software is everywhere today

It leads every our step. It is a part of everything we do

Discover the world at Leiden University

Software Life-Cycle Costs

Discover the world at Leiden University

What is software maintenance?

• repairing design and
implementation faults

• adapting software to a
different environment
(hardware, OS)

• adding or modifying
functionalities

Discover the world at Leiden University

What exactly is a
Code Smell?

“A code smell is a
surface indication that

usually corresponds to a
deeper problem in the
system… they are often

an indicator of a
problem rather than the

problem themselves”

Kent Beck and Martin Fowler (1999
Figures from https://refactoring.guru/

Code Smell: violating design principles

Discover the world at Leiden University

Figures from https://refactoring.guru/

Code Smell: few examples

Long method

A method with too many LOC

Data class

a class the contain almost only getters and setters

Feature Envy

A method that accesses the data of another object more

than its own data

Blob

A class that tries to do too many things

Discover the world at Leiden University

Refactoring can remove code smells

• Refactoring = changing the structure of a software system without
changing its observable behavior

• Use refactoring to remove code smells:
a) How to detect smells, either about code or design?
b) After detecting these smells, which refactoring should be applied?
c) What are the steps to apply these refactoring?
d) What are the gains when applying these refactoring?

We need automated support

Discover the world at Leiden University

Why is code smell difficult to identify?

• There is no formal definition or standard

• Developers have different perceptions of code smells

• Commonly used approaches for code smells detection rely on a
fixed set of metrics and corresponding threshold values

• There are reliability issues of the threshold values

• Programming languages have been evolving.

Discover the world at Leiden University

Existing methods to identify smell
• Metric-based = use fixed set of metrics and

corresponding threshold

• Values/symptom-based = use rules to detect
smells by symptoms

• Visualization-based = use graphical
representations to fine smells

• Probabilistic/search-based = learn standard,
search deviation

All lack of standardization/formalization of the smell definition

• Machine learning = use data from existing software projects

Discover the world at Leiden University

Tools, tools, tools

Tools are often compared against human perception…
…but comparing to 2 or 20 software systems

is not very statistically relevant

Discover the world at Leiden University

Machine learning to identify smell

Can we mimic a developer's perception of a
code smell?

How does machine learning perform when
comparing to existing tools?

Discover the world at Leiden University

The MLCQ Dataset
Madeyski, L., Lewowski, T.: MLCQ: industry-relevant code smell data set. In: Proceedings
of the Evaluation and Assessment in Software Engineering, pp. 342–347 (2020).

Code smells
No. of

reviews

Positive Negative No. of code

sample with

multiple

reviewsCritical Major Minor None

Blob 4076 129 316 539 3092 1741

Data class 4078 146 401 510 3021 2522

Feature

Envy
3337 24 142 288 2883 1030

Long

method
3362 78 274 454 2556 1060

Discover the world at Leiden University

MLCQ alone is not enough
• To use machine learning for detecting code smells, we need to extract

features metrics from each code
• Line of codes of methods and classes
• Number of method parameters
• Number of attributes
• … (20+ in total)

• How? MLCQ does not have this data…

• Extraction partly by PMD, but only present is smell is found

• Use of a different statistical and static analysis tools (like SciTools).

Discover the world at Leiden University

Rules vs. Data

PMD version 6.29.0 and our
customized version

• Blob
• Weighted method count (WMC)

• Access to foreign data (AFTD)

• Tight class cohesion (TCC)

• Data class
• Weight of class (WOC),

• Number of public attributes (NOPA)

• Number of accessor methods (NOAM)

• Weighted method count (WMC)

Our machine learning
prototype

• MLCQ averaged over multiple
reviewers and enriched with metric
information

• Three different binary classifiers
• Random forest classifier
• Decision tree classifier
• Majority class classifier

• Variable threshold value to get best
result

Discover the world at Leiden University

Accuracy and Precision of Predicting Blob

Accuracy Precision

Discover the world at Leiden University

Accuracy and Precision of Predicting Data Class

Accuracy Precision

Discover the world at Leiden University

Conclusions

• Can we mimic a developer's perception of a code smell?

Yes – but needs a large dataset of industry projects reviewed
by developers, cleaned, and prepared the data to be used in
the training process

• How does machine learning perform compared to other tools?

Machine learning classifiers outperform the static metric-
based code smell detection tool on all settings.

• The extended dataset is publicly available on OpenML.
(https://www.openml.org/d/43078 and https://www.openml.org/d/43079)

https://www.openml.org/d/43078
https://www.openml.org/d/43079

Discover the world at Leiden University

Observation
• Self-supervised & Unsupervised
• Code smell severity
• Interpretability
• Transfer learning

Challenges
• More code smells: duplicate code, lazy class,…
• Combining different approaches
• Many programming languages
• More data for validation
• Perception evolution

Discover the world at Leiden University

Questions?

You can always send an e-mail to:
m.m.bonsangue@liacs.leidenuniv.nl

liacs.leidenuniv.nl

liacsCS

@ul_liacs

groups/2084197

User: liacsmedialab

liacs

Coming soon …

莱顿大学科学学院

